

$$\begin{aligned}
H &= \cos(\pi x'/a) \\
I &= \sin(\pi y/b) \\
L &= \cos(\pi y/b) \\
M &= \sin(\pi y'/b) \\
N &= \cos(\pi y'/b) \\
R_{mn} &= [(x - x_m)^2 + (y - y_m)^2]^{1/2} \\
x_m &= (m + 1/2)a + (-1)^m(x' - a/2) \\
y_m &= (m + 1/2)b + (-1)^m(y' - b/2) \\
X_m &= \pi(x - x_m)/b \\
Y_m &= \pi(y - y_m)/a \\
S_m &= \sinh(X_m) \\
T_m &= \cosh(X_m) \\
U_m &= \sinh(Y_m) \\
V_m &= \cosh(Y_m).
\end{aligned}$$

Singularities in g and \bar{G}_{st} are exhibited by the terms corresponding to $m = 0, n = 0$.

APPENDIX II

A. Semipositive Definiteness of Matrix C

Let us consider the quadratic form $\mathbf{x}_i^T \mathbf{C} \mathbf{x}$ where \mathbf{x} is any real N -dimensional vector different from zero. Due to (12b) we have

$$\mathbf{x}_i^T \mathbf{C} \mathbf{x} = \sum_{i,j} x_i x_j C_{ij} = \int_{\sigma} \psi(l) \rho(l) dl \quad (A1)$$

where

$$\begin{aligned}
\rho(l) &= \sum_i x_i \frac{\partial w_i}{\partial l} \\
\psi(l) &= \int_{\sigma} g(s, s') \rho(l') dl'.
\end{aligned}$$

Due to the meaning of g , $\psi(l)$ is coincident with the electrostatic potential on σ given by a charge density ρ distributed on σ itself. Then (A1) is coincident with the expression of the electrostatic energy of this charge and, therefore, it is nonnegative. Null values of $\mathbf{x}_i^T \mathbf{C} \mathbf{x}$ may occur only with a vector \mathbf{x} such that $\rho(l)$ is zero, or, equivalently, such that $\sum_i w_i = \text{constant}$. Due to the choice of the basis $\{w_i\}$ such a vector exists if σ connects two points lying on the boundary of S_0 (see Section III). More generally, denoting by P the sum of the number of the portions of σ which connect points on the boundary plus the number of loops, P independent such vectors exist. Then \mathbf{C} has P null eigenvalues and its rank is $R = N - P$.

B. Positive Definiteness of Matrix L'

It is easily deduced that a quadratic form associated with \mathbf{L}' represents the electrostatic energy due to a charge density given by

$$\rho'(l) = \sum_i x_i u_i.$$

This cannot vanish, due to the independence of the functions u_i . Then, the quadratic form is always positive and matrix \mathbf{L}' is positive-definite.

C. Positive Definiteness of Matrix L

Due to (12c), a generic quadratic form associated with \mathbf{L} is

$$\mathbf{x}_i^T \mathbf{L} \mathbf{x} = \sum_{i,j} \int_{\sigma} \int_{\sigma} u_i u_j t(l) \cdot \bar{G}_{st}(s, s') \cdot t(l') u_j dl dl'. \quad (A2)$$

The solenoidal dyad \bar{G}_{st} may be expanded as

$$\bar{G}_{st}(\mathbf{r}, \mathbf{r}') = \sum_m \frac{e_m(\mathbf{r}) e_m(\mathbf{r}')}{k_m^2}. \quad (A3)$$

This expansion is easily established starting from (5), taking into account that $\nabla \times \nabla \times \mathbf{e}_m = k_m^2 \mathbf{e}_m$, $\mathbf{n} \times \mathbf{e}_m = 0$ at the boundary, and using the property of eigenvectors \mathbf{e}_m of being mutually orthogonal and orthogonal to $\nabla \nabla' g$. By substituting (A3) into (A2), we obtain

$$\mathbf{x}_i^T \mathbf{L} \mathbf{x} = \sum_m \left(\int_{\sigma} f(l) \frac{t(l) \cdot \mathbf{e}_m(s)}{k_m} dl \right)^2$$

where $f(l) = \sum_i x_i w_i(l)$. Since functions w_i are linearly independent $f(l)$ cannot vanish, so that the quadratic form is always positive. Then matrix \mathbf{L} is positive-definite.

REFERENCES

- [1] F. L. Ng, "Tabulation of methods for the numerical solution of the hollow waveguide problem," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-22, no. 3, pp. 322-329, Mar. 1974.
- [2] P. Laura, L. Diez, C. Giannetti, L. E. Lusconi, and R. Grossi, "Calculation of the fundamental cutoff frequencies in a case of waveguide of doubly-connected cross section," *Proc. IEEE*, vol. 65, no. 9, pp. 1392-1395, Sept. 1977.
- [3] D. Dasgupta and B. K. Saha, "Eigenvalue spectrum of rectangular waveguide with two symmetrically placed double ridges," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-29, pp. 47-51, Jan. 1981.
- [4] M. Ikeuchi, K. Inoue, H. Sawami, and H. Niki, "Arbitrarily shaped hollow waveguide analysis by the α -interpolation method," *SIAM J. Appl. Math.*, vol. 40, no. 1, pp. 90-98, Feb. 1981.
- [5] P. Saguet and E. Pic, "Le maillage rectangular et le changement de maille dans la methode TLM en deux dimensions," *Electron. Lett.*, vol. 17, no. 7, pp. 277-279, Apr. 1981.
- [6] N. P. Malakshinov and A. S. Smagin, "Investigation of arbitrarily shaped regular waveguides by the method of auxiliary sources," *Radio Eng. Elec. Phys.*, vol. 27, June 1982, English transl. pp. 56-60.
- [7] B. E. Spielman and R. F. Harrington, "Waveguide of arbitrary cross section by the solution of a non-linear integral eigenvalue equation," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-20, no. 9, pp. 578-585, Sept. 1972.
- [8] M. Bressan and G. Conciauro, "Rapidly converging expressions for dyadic Green's functions in two-dimensional resonators of circular and rectangular cross section," *Alta Frequen.* (special issue on Applied Electromagnetics), vol. 52, no. 3, pp. 188-190, 1983.
- [9] N. Marcuvitz, *Waveguide Handbook*. Radiation Lab. MIT, Cambridge, MA, 1951, pp. 56-60, 66-70.
- [10] A. D. Yaghjian, "Electric dyadic Green's functions in the source region," *Proc. IEEE*, vol. 28, no. 2, pp. 248-263, 1980.
- [11] R. F. Harrington, *Field Computation by Moments Method*. New York: MacMillan, 1968.
- [12] B. S. Garbow, J. M. Boyle, J. J. Dongar, and C. B. Moler, "Matrix eigensystem routines—EISPACK guide extension," in *Lecture Notes in Computer Science*, no. 51, G. Goos and J. Hartmanis, Eds., Springer-Verlag, 1977.
- [13] M. Bressan and C. Zuffada, "A computer program for studying TE modes in circular or rectangular waveguides strongly perturbed by axial cylindrical conductors," Dipartimento di Elettronica dell'Università di Pavia, Tech. Rep. RI-02/1983.
- [14] E. V. Jull, W. J. Bleackley, and N. M. Steen, "The design of waveguides with symmetrically placed double ridges," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-17, pp. 397-399, Jul 1969.
- [15] R. E. Collin, *Field Theory of Guided Waves*. New York: McGraw-Hill, 1960, pg. 124.

Correction to "Quasi-Optical Method for Measuring the Complex Permittivity of Materials"

F. I. SHIMABUKURO, MEMBER, IEEE

In the above paper,¹ in Column 1 of Table II on page 663, Reference [9] should read [10] and Reference [10] should read [12].

Manuscript received August 5, 1984.

¹F. I. Shimabukuro *et al.*, *IEEE Trans. Microwave Theory Tech.*, vol. MTT-32, pp. 659-665, July 1984.

The author is with the Electronics Research Laboratory, Laboratory Operations, The Aerospace Corporation, El Segundo, CA 90245.