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H= cos(~x’/a)

I= sin(7y/b)

L = COS(7i’y/b)

M= sin( 7ry’/b)

N = COS(7#/b)

%n=k-%)’+(y-yn)’]’”
xM=(m+l/2)cz +(-l) m(x’-a/2)

ym=(m+l/2) b+(–l)m(y’– b/2)

xm=7r(x-xm)/b

Y~=7r(y-y~)/a

& = sinh(Xm)

T~ = cosh ( X~ )

U~=sinh(Y~)

V~=cosh(Y~).

Singularities in g and ~,, are exhibited by the terms correspond-

ingtom=O, n=O.

APPENDIX II

A. Semipositive Definiteness of Matrix C

Let us consider the quadratic form X,CX where x is any real

N-dimensional vector different from zero. Due to (12b) we have

Xtcx = ~ Xixj c,, = j44h(0 d[
13J

a

(Al)

where

rj(l) =~g(s, s’)p(l’) all’.
o

Due to the meaning of g, $(1) is coincident with the electrostatic

potential on u given by a charge density p distributed on u itself.

Then (Al) is coincident with the expression of the electrostatic

energy of this charge and, therefore, it is nonnegative. Null values

of XICX may occur only with” a vector x such that p(1) is zero, or,

equivalently, such that XX,Wt = constant. Due to the choice of the

basis {w, } such a vector exists if u connects two points lying on

the boundary of & (see Section III). More generally, denoting by

P the sum of the number of the portions of u which connect

points on the boundary plus the number of loops, P independent

such vectors exist. Then C has P null eigenvalues and its rank is

R= N–P.

B. Positive Definiteness of Matrix L’

It is easily deduced that a quadratic form assoicated with L’

represents the electrostatic energy due to a charge density given

by

p’(l) =~x, ul.
1

This cannot vanish, due to the independence of the functions u,.

Then, the quadratic form is always positive and matrix L’ is

positive-definite.

C. Positive Definiteness of Matrix L

Due to (12c), a generic quadratic form associated with L is

This expansion is easily established starting from (5), taking into

account that v x v x em = k~e~, n X em = O at the boundary,

and using the property of eigenvectors em of being mutually

orthogonal and orthogonal to v v ‘g. By substituting (A3) into

(A2), we obtain

(f )X,~X=~ ~f(z)t(Z)~(s) dl 2
m m

where f(1) = Zflxl w, ( 1). Since functions w, are linearly indepen-

dent f(1) cannot vanish, so that the quadratic form is always

positive. Then matrix L is positive-definite.
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Correction to “Quasi-Optical Method for Measuring

the Complex Permittivity of Materials”

F. I. SHIMABUKURO, MSMBER, IEEE

In the above paper,l in Column 1 of Table II on page 663,

Reference [9] should read [10] and Reference [10] should read

[12].

The solenoidrtl dyad ~,, maybe expanded as

em(r) em( r’)
G,,(r, r’) =x k2 .

m m
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