1504

H=cos(wx'/a)

I'=sin(wy/b)
L =cos(my/b)

M=sin(7ry’/b)
N =cos(7y’/b)

Ry =[(x=x,)"+(y = 3]
x,=(m+1/2)a+(-1)"(x"—a/2)
Ym=(m+1/2)b+(~1)" (¥~ b/2)
X,=n(x—x,)/b
V,=m(y=yn)/a

1/2

S, = sinh( X,,,)
7, =cosh(X,)
U, =sinh(7,)

Vv, =cosh(Y,).

Singularities in g and G, are exhibited by the terms correspond-
ing to m=0,n=0.

APPENDIX II

A. Semipositive Definiteness of Matrix C

Let us consider the quadratic form x,Cx where ¥ is any real
N-dimensional vector different from zero. Due to (12b) we have

xCx=Y x%,C, = [w(D)p(l) dl (A1)
] o
where
p(l)=Zx,%‘%
¥(1) =_/;8(3,S’)p(l') dar.

Due to the meaning of g, ¢(/) is coincident with the electrostatic
potential on ¢ given by a charge density p distributed on o itself.
Then (Al) is coincident with the expression of the electrostatic
energy of this charge and, therefore, it is nonnegative. Null values
of x,Cx may occur only with a vector x such that p(J) is zero, or,
equivalently, such that £ x,w, = constant. Due to the choice of the
basis {w,} such a vector exists if o connects two points lying on
the boundary of S, (see Section III). More generally, denoting by
P the sum of the number of the portions of ¢ which connect
points on the boundary plus the number of loops, P independent
such vectors exist. Then C has P null eigenvalues and its rank is
R=N-P.

B. Positive Definiteness of Matrix L’

It is easily deduced that a quadratic form assoicated with L’
represents the electrostatic energy due to a charge density given
by

() =X xu,.
i
This cannot vanish, due to the independence of the functions u,.
Then, the quadratic form is always positive and matrix L’ is
positive-definite.
C. Positive Definiteness of Matrix L

Due to (12¢), a generic quadratic form associated with L is
x,Lx=Zf/ult(l)'ast(s,s’)~t(l’)uj did’.  (A2)
1,7 o°c

The solenoidal dyad G,, may be expanded as

en(r)

G (r,r) =g ol (89
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This expansion is easily established starting from (5), taking into
account that v X V Xe, = k2e,,n Xe, =0 at the boundary,
and using the property of eigenvectors e,, of being mutually
orthogonal and orthogonal to ¥ v’g. By substituting (A3) into
(A2), we obtain

x,Lx=§(‘/;f(l)%dl

where f(/)=2X"x,w, (/). Since functions w, are linearly indepen-
dent f(I) cannot vanish, so that the quadratic form is always
positive. Then matrix L is positive-definite.
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